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Abstract—The penetration of projectiles with conical and ogival nose shapes into target media described by
a locked hydrostat and a linear shear failure-pressure relation is investigated. A cylindrical cavity
expansion approximation is employed which idealizes the target as thin independent layers normal to the
penetration direction and permits one-dimensional wave propagation calculations in the radial coordinate.
Closed-form expressions are derived for the stresses on the penetrator nose, stress profiles in the target and
the resultant axial force on the penetrator nose.

INTRODUCTION

Studies concerned with the penetration of projectiles into geological targets usually focus on
the depth of penetration, penetrator deceleration history or stresses on the nose. Predictions of
these quantities use solution techniques that may be grouped into three main categories: (1)
empirical equations for final penetration depth based on test data[l,2], (2) models which
approximate the target response by one-dimensional motion using cylindrical or spherical cavity
expansion methods[3-7], and (3) detailed numerical solutions which employ two-dimensional
wave codes[8,9]. All of these approaches have advantages and limitations which must be
considered for a given application.

The present study uses the cylindrical cavity expansion approximation which idealizes the
target as thin independent layers normal to the penetration direction as shown in Fig. 1. Only
radial motion of the target material is permitted, but this should be a reasonable assumption for
slender projectiles. In a recent paper[3], the authors utilized this approximation to obtain forces
on conical-nosed penetrators for targets described by a linear hydrostat and a linear shear
failure-pressure relation. Since many dry sand, grout and rock[10, 11] materials have hydrostats
which are initially linear, stiffen and then approach a locking limit with increasing hydrostatic
pressure, solutions for locked hydrostats (Fig. 2) are also of interest. For a specified target and
penetrator, the penetrator velocity determines the state on the hydrostat, and for sufficiently
high velocity locking solutions are applicable. Thus, formulas derived in this study for a locked
hydrostat complement the results of [3] for a linear hydrostat.

Previous studies on penetration into targets with locked hydrostats calculate stresses on the
penetrator nose and use a constant shear failure-pressure relation[4] or a perturbation method
to model soft soil with small shear strength[S]. This study uses a linear shear failure description
for the target and results for the constant shear failure relationship are included as special
cases. In addition, closed-form expressions for projectiles with conical and ogival nose shapes
are derived for stresses on the penetrator nose, stress-profiles in the target and the axial
resultant force.

FORMULATION OF THE PROBLEM
A rigid projectile with a conical or ogival nose penetrates a uniform target medium with
normal incidence. The problem is axisymmetric and is further simplified by applying the
cylindrical cavity expansion approximation. As shown in Fig. 1, this approximation considers
the target as thin layers normal to the direction of penetration and simplifies the analysis to
one-dimensional wave progagation in the radial coordinate. This model assumes that all motion
in individual target layers is one-dimensional, radial and independent of any other layer.
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Fig. 1. Geometry for cylindrical cavity expansion.

3 pF———————
]

*

n p

Fig. 2. Material model.

The target medium is described by the locked hydrostat and linear shear failure-pressure
relation shown in Fig. 2. It is further assumed that ¢, = g, during the penetration event which
matches the physical situation for triaxial material tests{10]. Thus, the hydrostatic pressure is
given by

p = 1/3(c; +20) (1a)

and the shear failure~-pressure relation is given by
T=0,~ 0 = To+ up. (1b)
Equations (la, b) are combined to give the radial stress component
ar = (142 u/3)p +27/3. (1c)

An idealized layer of target material is expanded by the penetrator as shown in Fig. 1. The
equations of momentum and mass conservation in cylindrical, Lagrangian coordinates{9] are

2

du_ o, .4
por 5T = (r+u)—37 (o, og)g;(r-%-u) (2a)
1o 2= Po
2ar(r+ u) P r (2b)

where po, p are the initial and current densities, u is the radial displacement and o,, g, are the
radial and circumferential components of Cauchy stress, taken positive in compression. Elastic
strains are neglected and eqns (la, b and c) are used to eliminate oy from eqn (2a) which
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becomes

au da, ) Tov @
= - Proiedl —_— - +u 33
por—rat (r+u) o vo, ar(r+u) (r+u) (3a)

v =3u/(3+2p). (3b)

The nose of the rigid penetrator traveling at constant velocity V begins to open a circular

cavity in a given layer at time ¢ =0, Radial displacement at the cavity wall u(0,¢) = R(t) is
specified by the nose shape. For a conical nose

R(t)=(Vtan¢)t. (4a)

The ogive shape is an arc of a circle with radius s and is tangent to the cylindrical aft body as
shown in Fig. 3. For an ogive nose shape

R =(a-s)+[s*=-U-2)?, z=Vt (4b)

The other boundary condition requires that the radial displacement at the wave front is zero
and the formulation of the cavity expansion problem is complete.

CAVITY EXPANSION SOLUTION?

For the idealized hydrostat shown in Fig. 2., the density at the wave front p = p* is the
specified locked density. With constant density, eqn (2b) can be integrated to give

(r+u)=(1-79%r+R¥t) (5a)
n* =1-polp* (5b)

where R(t) is the motion of the cavity wall. Since u =0 at the wave front position r = r*, the
wave front location is given by

r*=Rl(n*)'" (¢)

where the asterisk indicates wave front values.

o
=

Fig. 3. Conical and ogival nose geometries.

*The solution procedure in this section is similar to that presented in[10] for application to the response of media to long
explosive charges.
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Mass and momentum conservation equations across the wave tront are

i*=F%, ot = (Y ®

where dot indicates differentiation with respect to time. Differentiation of eqn (5a) with respect
to time and evaluation at the wave front gives

r*iu* = RR. 0))
From eqns (5c), (6) and (7) the wave front radial stress and wave front propagation velocity are

o*=pR?, #*=Rl(n*)'". ®)

Multiplying both sides of eqn (3a) by (r + u)*~' and integrating with respect to r gives
v " v—i azu v ok
(r+u)’ ofr)=py (r+u) r—at—fdr+(r*) o

+ (ol ) [(P*)" ~ (r +u)’]. ®)

Using eqns (5a) and (8) the above equation can be written as

o.(r) =£9§(—I:—i+—ul)?&fr" rl(1—n*) r*+ RY}“*Ndr

_bo(RRY

" oy 2 21(2-2)
(r+u)"], ri(t-7*) r‘+ R dr

+ PORZ[")* + (1 - 71*)52]-",2

+ ()l +(1 =981 - 1) (10
which integrates to
Lo
o,(r) = B EES e (1 - mgy-
32
G2 i+ (A==t (- ()

+poR[n* + (1= ET "+ (vl {[n* + (1= €T - 1}
in which
g=rlr¥, r*=Ri(n*". (11b)

For the special case where w =0 for a constant shear failure-pressure relation eqn (2a)
integrates to

_ g nt1-¢&)
o= o {15 = )

_ po(R? + RR)

i) In{n*+(1 - n*)€

~(1o/2) In[n*+(1-n*)§], forp=0 (12)



Penetration into targets 919

These eqns (11a) and (12) for radial stress indicate that the contribution due to 7o is independent
of the nose shape.

Equations (11) and (12) give the radial stress in the annulus between the cavity wall specified
by R(t) and the wave front radius r*. The nose shapes specify R(t) and are given by eqns
(4a, b). For the conical nose

R*=(Vtan¢)’, R=0 (13)
and for the ogival nose
52 Vi(I—2) _
R_s—(l—z)’ z=Vt (14a)
2 5 _ _v)i_ sz(s-a)
R*+RR = V{] m} (14b)

The radial stress component on the penetrator nose can be determined from eqns (11) or (12) with
£ =0and eqns (13) and (14). If, however, the radial nose stress becomes tensile, the target medium
will separate from the penetrator nose.

NOSE STRESSES AND AXIAL RESULTANT FORCES
The radial stress on a conical nose are obtained from eqns (11), (12) and (13) and are given

by
0,(0) = -E‘ﬂé%ﬁl));,,[ . +—’1—] (15)
1% e 1 -
-l ) L |+ ol -
and

2
o,(0)="°‘V‘2““¢) [l-]_ln*lnn*]—zzglnn*, for = 0. (16)

These results indicate that the stress profiles are constant for a conical nose. The
incremental radial ring force for a thin target layer with thickness dz is

dF, =0,dA =270, (0)R(z) dz an
where dF, is interpreted as the radial component of the incremental normal force. Thus, the

incremental axial force is
dF,=dF,tan¢ and (18a)

!
F, = 27a,(0) J; z tan? ¢ dz = 7a’o,(0) (18b)

where a is the radius of the cylindrical portion of the penetrator shown in Fig. 3 and o,(0) is
given by eqn (15) or (16).
The radial stresses on an ogival nose are obtained from eqns (11) and (12) and are

. wni-v2 _

+ Po(fl _+ Ii’;) (%)™ = 1]+ (ol w)(n*) ™ = 1] (19)
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and

2
o (0) = pOR pO(Rza- l_iRl;n ul -Z—"ln n* foru=0 (20)

where R and (R*+ RR) are given by equations (14a, b). The axial resultant force on an ogival
nose is

F,=2wf 5O R -%de @1
0 z

where dR/dz replaces tan ¢ in eqn (18a) and the upper limit of integration A corresponds to the
axial position where the radial stress becomes tensile and the target is no longer in contact with
the penetrator. Substitution of eqns (4b) and (19) into eqn (21) and performing the integration
gives

_ (%)
o= 2mevC (- |

—2mmvﬂc{9§?31—y]+zw’°c[hﬁyﬂz—l] (22)

where the constants C,, C; and C; are given by

C = (’A) -2 +ps—u—mﬂ[ =1 ]m
' 2 g T3y
52 §2~ 2
i b= 232)
B 12_(1"A)2 2 s2_[2 12 ”
O R A Al e 230
2 Jd_p2
(22 (] — A N2TV2 s4(s° =19
2 Y
C3=—%"(l 2)‘) +s2_(s2__lZ)lII[sz_(l__/\)Z]IIZ. (23C)
For p =0, the axial force is given by
2 2 h'l 77* *
Fz = wpoV C|+ 1TpoV sz—ﬁ‘fo C3 In n. (24)

As discussed in (3), acceleration-time can be measured in field tests. If the axial velocity V
varies with time, the equation for rigid body motion of a penetrator with mass m is given by

mgd-‘{-=—(AV2+B) (25)

where A, B are given by eqns (15), (16) and (18b) for a conical nose and eqns (22) and (24) for an
ogival nose. Equation (25) with the initial condition V(t =0) = V, has solutions

X =

m {cos[tan‘l Volc = Act/m]} (26a)

an cosftan™' Vy/c]

V = ¢ tanftan™' Vo/c — Act/m] {26b)
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%‘t—/- = — Bfm secqtan™ Vy/c ~ Act/m) (26¢)

for distance, velocity and acceleration, where ¢ = 7*, the wave front velocity.

NUMERICAL RESULTS AND DISCUSSION

Some numerical results for a conical-nosed penetrator are presented in Figs. 4-6. Radial
stress profiles in the target are shown in Fig. 4 for several values of p and 7, =0.
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Fig. 4. Radial target stress profiles for a conical nose; n* =0.10, 70 =0,
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Fig. 5. Radial stress on 2 conical nose for 7, =0,
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Ir 10= 7,/ Pg(V tan 8)°
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Fig. 6. Radial stress on a conical nose for u =0.

These curves show the radial stress increasing behind the wave front and maximum at the
penetrator nose. The last term in eqn (11a) indicates that for 7o # 0 the wave front values remain
unchanged and that the contribution in radial stress due to 7o monotonically increases from the
wave front to the conical nose. Thus, radial stress increases behind the wave front and is
maximum at the penetrator surface, r =0, for all values of u and 7.

Radial stresses on the conical nose vs locked density are shown in Fig. 5 for several values of
w with 1o =0 and in Fig. 6 for several values of 7, with u = 0. Some criterion for the admissible
ranges of u and 7, is required for this theory. We arbitrarily choose to keep o, compressivet
and the parametric ranges in Figs. 5 and 6 reflect this criterion. From equations (1a, b)

0o = (33—;2%) o - (-3—}27) o @n

For 7,=0, the requirement that o, be compressive implies that p <3, which represents a
practical range [3]. With u =0, o, = 7,; and since radial stress is minimal at the wave front given
by eqns (8) and (13), o<po (V tan $)>. As previously discussed, radial stress is spatially
constant on a conical nose and the resultant axial force can be obtained from eqn (18b).

Numerical results for an ogival nosed penetrator are given in Figs. 7 and 8. The spatial
distribution of radial stress on a CRH = 6 (caliber radius head) where

CRH =s/2a (28)

is given in Fig. 7 for several values of . For these cases with 7 =0, the radial stress becomes
tensile in the vicinity of z =If2 which is interpreted as the position where the target separates
from the penetrator. As indicated by eqn (19), the inclusion of 7, would translate these curves
upward and move the position of separation towards the aft cylindrical body. If 7, is sufficiently
large, no separation on the nose will occur. The resultant axial force versus n* for several
values of u with 7o =0 is presented in Fig. 8.

+For materials where oy has tensile strength this criterion can be easily modified.



Penetration into targets 923

08 T T T T T T L T T

z/d
Fig. 7. Radial stress distribution on an ogival nose; CRH =6, a = 76.2 mm (3.0in), n* = 0.10, 70 =0.
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Fig. 8. Resultant axial force on an ogival nose; CRH=6, a =76.2mm (3.0in), 1o =0.

As previously mentioned, the authors have calculated the forces on a conical-nosed penetra-
tor for targets described by a linear hydrostat and a linear shear failure-pressure relation with
7o = 0[3]. Resuits in[3] indicate that the resultant force on a conical nose is nearly proportional
to V tan ¢; whereas, the solutions presented herein for a locked hydrostat predict the resultant
force on a conical nose to be proportional to (V tan ¢)%.
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